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Theory of the Measurement of Weak Molecular Complexes. 
II. Consequences of Multiple Equilibria 
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Abstract: The consequences of multiple equilibria on the calculation of formation constants and other molecular 
constants for weak complexes are considered from a theoretical standpoint. A microscopic model is used to illus­
trate the averaging process involved in the assignment of formation constants for higher order complexes, and the 
slopes, and intercepts of various plotting forms usually applied to the evaluation of weak complexes are derived for 
a PX, PX2 system. It is shown that, except in the special case where all the microscopic constants of the system 
are closely similar, curved lines are to be expected on all of the usual plots. At very low saturation fractions, how­
ever, curvature is small, and in the limit as the concentration of the excess component approaches zero, the plotted 
curves are indistinguishable from straight lines. The slopes and intercepts of such lines have widely differing ex­
perimental meaning and cannot be interpreted simply as "K" or "Kt" except in cases of very little practical interest. 
From the shape of the theoretical curves, it appears that it is necessary to measure of the order of 75% of the entire 
saturation curve before a given stoichiometric model can be assigned to the fitted data. 

I n the preceding paper of this series, we have attempted 
to point out where errors may arise in the evaluation 

of formation constants of weak complexes by the usual 
methods of analysis.1 In particular, we have tried to 
show the necessity for collection of roughly 75 % of the 
data comprising the entire saturation curve in order to 
prove the model, or range of models, fitting the phe-
nomenological equation "straight line." We would 
like now to enquire into specific conditions under which 
the entire binding curve cannot be represented as a 
straight line, i.e., to consider the consequences of mul­
tiple equilibria on the slopes and intercepts of the 
Benesi-Hildebrand2 and Scott3 plots, from which vir­
tually all formation constants for weak complexes 
have been evaluated to date. The reason for so doing 
is to examine the possible origin of observed or sus­
pected anomalies4-11 in the reported values of "K" 
or "e" other than those generated by insufficient data to 
obtain an accurate slope or intercept from the appropri­
ate plot.14 

The problem of higher order complexes has been 
more or less exhaustively treated12 in the literature and 
the concept has been applied by Ross and Labes9 to 

(1) Par t i : D. Deranleau, / . Am. Chem. Soc, 91,4044 (1969). Note 
that in the present paper, the notation K is used for the macroscopic 
binding constant, whereas in the preceding paper, k was used for the 
same constant. The purpose is to emphasize the difference between 
simple 1:1 binding, for which the microscopic constant k and the macro­
scopic constant K are identical, and multiple binding, where in general 
AT is a function of several k'%. 

(2) H. A. Benesi and J. H. Hildebrand, / . Am. Chem. Soc, 71, 2703 
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(3) R. L. Scott, Rec. Trac. Chim., 75, 787 (1956). 
(4) W. B. Person,/. Am. Chem. Soc, 87,167 (1965). 
(5) P. H. Emslie, R. Foster, C. A. Fyfe, and I. Horman, Tetrahedron, 

21, 2843 (1965). 
(6) P. H. Emslie and R. Foster, ibid., 21, 2851 (1965). 
(7) S. Carter, J. N. Murrell, and E. J. Rosch, J. Chem. Soc, 2048 

(1965). 
(8) S. Carter, ibid., A, 404 (1968). 
(9) S. D. Ross and M. M. Labes, J. Am. Chem. Soc, 79, 76 (1957). 
(10) N. J. Rose and R. S. Drago, ibid., 81, 6138 (1957). 
(11) L. J. Andrews and R. M. Keefer, "Molecular Complexes in 

Organic Chemistry," Holden-Day Inc., San Francisco, Calif., 1964. 
(12) See, for example, F. J. C. Rossotti and H. Rossotti, "The De­

termination of Stability Constants," McGraw-Hill Book Co., Inc., 
New York, N. Y., 1961; J. T. Edsall and J. Wyman, "Biophysical 
Chemistry," Vol. I, Academic Press, New York, N. Y., 1958; G. Weber 
in "Molecular Biophysics," B. Pullman and M. Weissbluth, Ed., Aca­
demic Press, New York, N. Y., 1965. 

weak molecular complexes of the "charge-transfer" 
type. Carter, et al.,7 proposed a solvent binding theory 
to account for anomalies in the values of "AT" and "e"; 
however, it was later found necessary to include a 
higher order complex in the theory in order to fully 
explain the anomalies in the calculated constants.8 

Johnson and Bowen13 concluded from numerical 
calculations that straight lines are obtained from the 
Benesi-Hildebrand plot in spite of the presence of 
higher order complexes with widely differing step 
formation constants. However, this conclusion can be 
shown to be generally false except under certain con­
ditions (data obtained over a limited range of the 
saturation curve), and little can be said concerning the 
stoichiometry for these cases. In addition, Johnson 
and Bowen made no attempt to predict theoretical 
values for the slope and intercept of the plot, which 
can have widely different experimental meaning for 
different multiple equilibria systems. Equations of 
multiple equilibria specifically derived for charge-
transfer complexes have also been presented by Brie-
gleb,14 but again no attempt was made to evaluate the 
slopes or intercepts of the various plots. 

The Microscopic and Macroscopic Binding Models. 
For purposes of clarity, we shall rederive the normal 
equilibrium equations of a simple model of multiple 
binding (complexes of the type PX and PX2) from the 
standpoint of a microscopic model. Although no ad­
ditional information concerning the formation con­
stants of the over-all macroscopic equilibrium reaction 
results from this treatment, the microscopic model is 
directly applicable to kinetic methods and has the 
advantage of clearly demonstrating the averaging pro­
cesses involved in the application of the usual macro­
scopic model to the binding process, and the possible 
mechanisms of such binding processes. 

Consider a dilute component P, at constant total 
concentration [P0], to which two molecules of a second 
component X can be bound according to the scheme 
in (1). 

(13) G. D. Johnson and R. E. Bowen, J. Am. Chem. Soc, 87, 1655 
(1965). 

(14) G. Briegleb, "Elektronen-Donator-Acceptor-Komplexe," 
Springer-Verlag, Berlin, 1961. 
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PX(I) ^ = % P X 2 0 , 2 ) 

F > = = * PX(2)' 

O) 

The Zc's are the microscopic association constant for the 
reactions shown, and the model implies that there are 
two microscopically distinct species PX which have the 
possibility of binding a molecule of X on either site 1 
or site 2; that is, the sites are distinguishable. All 
possibilities are allowed by the model, for example, 
ki = k2 = ku = 2̂1 (equivalent and independent sites); 
ku > k\ and/or ku > Zc2 (normal or mixed cooperative 
binding); k2 = ku = 0 (cooperative binding in which 
the second site is created by the addition of the first 
molecule of X); Zc1 ^ Zc2 5* ku ^ kn (competitive 
equilibria with interactions between sites); etc. If 
the absorbance of the solution of P and X is due en­
tirely to the formation of complexes with microscopic 
extinction coefficients e(l), e(2), e(l,2), not necessarily 
the same, we can write 

A = C(IXPX(I)] + e(2)[PX(2)] + e(l,2)[PX2(l,2)] (2) 

presuming that Beer's law holds for each species. The 
total concentration of the dilute species P is 

[Po] = [P] + [PX(I)] + [PX(2)] + [PX,(1,2)] (3) 

and introducing the association constants defined by 

[PX(I)] = Zc1[P][X] 

[PX(2)] = Zc2[P][X] 

[PXj(U)] = Zc12[PX(I)][X] = /C1MP][X]2 

= /c21[PX(2)][X] = Zc2MP][X]2 

and eliminating [P] from eq 2 and 3 

_A_ { M O + M2)}[X] + /C1Zc126(U)[X]2 

[Po] 1 + (Zc1 + Zc2)[X] + /CiMX]2 

(4) 

(5) 

This is the microscopic form of the equation given by 
Briegleb,14 and with Zc2 = Zc21 = Zc12 = 0 reduces to the 
simple Benesi-Hildebrand or Scott relationships, or to 
that due to Scatchard15 and used for charge-transfer 
calculations by Foster, et a/.16 Note that the term in 
[X] involves a summation over the two possibilities for 
the binding of the first mole of X. The appropriate 
macroscopic form of the equation is found by intro­
ducing the macroscopic association constants 

AT1 = k\ + k2 KiK2 = kikn = k2k2. (6) 

and the weighted-average (macroscopic) extinction 
coefficients17 

C1 = [Zc16(I) + M W i + fe) «2 = e(l,2) (7) 

obtaining14 for the over-all equilibrium reaction P ;=± 
PX ^ i PX2 

A_ 
[Po] 

AT161[X] + A^262[X]2 

(8) 1 + AT1[X] + KiKi[XY 

Similar equations can be derived with the chemical 

(15) G. Scatchard, Ann. N. Y. Acad. Sci., 51, 660 (1949). 
(16) R. Foster, D. L. Hammick, and A. A. Wardley,/. Chem. Soc, 

3817 (1953). 
(17) From the definition t, = 2,fc;e(<)/2<*;.- L. E. Orgel and R. S. 

Mulliken,/. Am. Chem. Soc, 79, 4839 (1957). 

line shift (nmr spectroscopy) as the measure of com-
plexing. When t2 = 26l = 2e, eq 8 reduces to a form 
of Adair's equation18 for two sites 

2c[Po] 
[AT1[X] + 2Ar1AT2[X]2] 

1 + AT1[X] + AT1AT2[X]2J 
^ s (9) 

where the factor 1/2 has been introduced to normalize 
the values of the saturation fraction s to the condition1 

0 ^ s ^ 1. Note that when the approximation [X] 
~ [X0] cannot be made, eq 8 or 9 is fourth order in 
[X]. 

Form of the Graphs of Eq 8. A plot of [P0]/'A vs. 
[X]-1 (Benesi-Hildebrand or reciprocal plot), or of 
[Po][X]//! vs. [X] (Scott or half-reciprocal plot), or of 
/4/[P0][X] vs. Af[P0] (Scatchard plot) will in general give 
a curved line except in the special case where all the 
microscopic association constants are identical (AT1 

= 4AT2 = 2Zc) and all the microscopic extinction co­
efficients are identical (e2 = 26l = 2«). Under these 
conditions, eq 8 is necessarily a straight line on any 
of these three plots according to the relationship 

A Zc[X] 
26[P0] " 1 + Zc[X] = s (10) 

Except for the factor 2 in the denominator on the left-
hand side, eq 10 is identical with the equation obtained 
for the formation of only a 1:1 complex.1 If the 
microscopic constants are merely of the same order of 
magnitude for each microscopic species, the plots 
may be experimentally indistinguishable from a straight 
line over the entire saturation curve, depending on how 
accurately the data can be obtained. In any case, 
there will be portions of the saturation curve which can 
always be represented as straight lines on any of the 
three plots mentioned; these will occur as [X] becomes 
very small or very large, and correspond to small and 
large saturation fractions, respectively. Since in the 
case of observable curvature the slope is constantly 
changing except in these regions, the observed slope or 
intercept calculated on the assumption of a straight 
line for the entire curve (simple Benesi-Hildebrand or 
Scott treatment) will depend on the region in which the 
data are collected. 

The importance of these considerations has ap­
parently not been widely recognized in the application 
of equilibrium methods to weak molecular complexes, 
although a large amount is known about the funda­
mental principles.12 Thus Ross and Labes9 interpreted 
several different sets of multiple equilibria data, ranging 
from 40 down to 5 % of total saturation, all as straight 
lines, and Johnson and Bowen13 were led to conclude 
that a second-degree equation would yield straight 
lines when plotted according to the simple Benesi-
Hildebrand treatment. The problem in both these 
cases is again one of insufficient data, as curvature is 
small over the ranges of saturation fraction employed. 
By symmetry, maximum deviation from the straight 
line case occurs at a saturation fraction of 0.5, and this 
figure was not obtained in either of the two works 
mentioned above. In the experiment of Ross and 
Labes,9 it appears that the observed formation constant 
decreases with increasing saturation fraction as more 
and more of the curved line is least squared as a straight 
line; the experiment which gave the "best" value was 

(18) G. S. Adair, J. Biol. Chem., 63, 529 (1925). 
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Figure 1. Scatchard plots of various types of multiple equilibria. 
Curves 1 and 2 are examples of ordinary, noncooperative equilibria, 
curves 4 and J are examples of equilibria with cooperative effects, 
and curve 3 is the straight line obtained when all the microscopic 
constants are identical. The equivalent saturation fraction scales 
are shown at the top and right of the graph, and the crosses mark 
the point of half-saturation; see Table I for constants used to com­
pute the curves. Dashed lines represent the limiting slopes at low 
saturation. 

Figure 2. Benesi-Hildebrand, or reciprocal plots of various types 
of multiple equilibria (conditions same as for Figure 1). 

one in which the saturation fraction did not exceed 5 % 
and represents a limiting case (see below). Although 
Johnson and Bowen13 concluded that curvature was 
negligible, it is apparent even in their data, which were 
all obtained at low saturation fractions and are thus 
not representative of the entire experiment. As pointed 
out previously,1 the Benesi-Hildebrand plot is a par­
ticularly bad plot on which to see curvature because of 
the reciprocal doubling effect. Johnson and Bowen13 

also concluded that the plots were linear when com­
plexes of the type P2X were present; this finding is 
correct, as shown theoretically by Deranleau19 for 
the general case of complexes of the type P4Xj under 
the same conditions ([P0] = constant, [X0] is variable). 

An examination of the actual graphs for various 
microscopic models comprising the over-all reaction 
P ^ PX ;=i PX2 helps to clarify the situation. Ex­
amples of these graphs are shown in Figures 1-3, and 
the numerical values of the various parameters used 
to obtain the curves are given in Table I, along with the 
concentrations of X required to reach half-saturation, 

(19) D. Deranleau, J. Chem.Phys., 40,2134(1964). 

I/*;*, = .0001 

Figure 3. Scott or half-reciprocal plots of various types of multiple 
equilibria (conditions same as for Figure 1, but note that the s scale 
cannot be uniquely given, as it is different for each curve). 

[X]i/r Although a particular set of values was chosen 
for representation, the situation is not basically different 
for other sets. In the case of the Benesi-Hildebrand 
(Figure 2) and Scott (Figure 3) plots, representation of 

Table I. Microscopic and Macroscopic Formation Constants and 
Extinction Coefficients Used for Data in Figures 1-3« 

Curve no. 

1 
2 
3 
4 
5 

K1 

10 
10 
10 
10 
10 

K1 

0.1 
1 
2.5 
5 

10 

* i = 
5 
5 
5 
5 
5 

k, k 2 = kn 

0.2 
2 
5 

10 
20 

[XJv, 
1.2 
0.32 
0.20 
0.14 
0.10 

" Units are 1. mole-1 for K, k; mole L- ̂ Or[XIy2. The additional 
constants n = e2/2 = e = 1000 1. mole"1 cm"1 (e(l) = e(2) = 
t(l,2)/2) and [Po] = 10~3 mole I.-1 were used in the calculations. 
Under these conditions [X] i/2 = \l(KiKif/\ 

the entire saturation curve is not feasible because of the 
open upper limit for the abscissa.l It is obvious from 
the figures that curvature, if present, will be most easily 
seen on the Scatchard plot (Figure 1), and of the three 
plots shown curvature is least obvious on the Benesi-
Hildebrand plot, especially at low saturation ratios. 
This is the graphical explanation of why Johnson and 
Bowen13 were unable to obtain significant curvature; 
in only two of the four cases studied for PX2 formation 
did the saturation fraction reach ~0.4 , and, similar 
to the case of Ross and Labes,9 the theoretically gen­
erated curves were subjected to straight-line fitting 
procedures. 

Slopes and Intercepts of the Plots. Since the values 
of the slopes and intercepts of the various plots are 
obviously composite values, it is pertinent to examine 
at this point the actual values of the limiting slopes 
and intercepts at small saturation ratios, under which 
conditions much if not most weak-complex formation 
data have been obtained. The slopes of the various 
plots are easily obtained by differentiation of the rele­
vant form of eq 8 and are 

d([Po]M) ex + 2K2C2[X] + K1K2Je2 - eQ[X]2 

d(l/[X]) A 1 ( ^ + 2/W2[X] + K2W[X]*) 

d([?0][X]/A) 
d[X] 

KIt1 - K2t2 + 2K1K2^[X] + K1K2^t2[XY 
KW + 2/W2[X] + K^[XY) 

( H ) 

(12) 
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Table II. Limiting Slopes and Intercepts of Various Plots for the Model P ^ PX ;=± PX2 

Plot 

Low saturation limit 
s, [Xo] -* 0 

Slope Intercept 

High saturation limit 
S-I1[Xo]-* » 

Slope Intercept 

Scatchard 
(Figure 1) 

Benesi-Hildebrand 
(Figure 2) 

Scott 
(Figure 3) 

<' ~ g) Km 

Kt1 

U1 _ KxA 
t\ KeJ 

e\ Km) 
1 

Kit! 

0 - C ' 

€2 

1 
t2 

Ux - ^) 
Kt2\ I2/ 

d(^/[P0][X]) d(^/[P0][X]) d(A/[P0]) 
d(^/[Po]) d[X] d[X] 

K1
26t - K2J2 + 2A1A^1[X] + A2

262[X]2 

" Ai81 + 2A2e2[X] + A1A8(C, - OfX]2 (13) 

for the Benesi-Hildebrand, Scott, and Scatchard forms, 
respectively. The limiting slopes and intercepts, at 
low and high saturation ratios, are given in Tables II 
and III for the various cases. It should be strongly 
emphasized that in virtually no cases of interest will 
division of the limiting slope by the intercept (or vice 
versa) yield unique values for "A" or for "«." Unique 
values for both constants will be obtained only for the 
case in which A1S1 » A2e2, which is of very little prac­
tical interest. In view of this restriction, we propose 
to introduce an apparent formation constant and an 
apparent extinction coefficient defined, for the PX, 
PX2 system, for example, by the relations 

*app = A1[I - (A 2 € 2 /A i e i ) ] 

«aPP = «i[l - (K2e2/K1C1)]-1 

Aappeapp = (Ae)app = A ^ 1 

(14) 

These apparent constants would apply to the straight-
line fitting of data at low saturation fractions, and 
constants so obtained should be clearly labeled in those 
cases where proof of the actual stoichiometry is lack­
ing. 20 It is worthwhile to mention that such proof is 

Table III. Slope and Intercept of the Line of Identical Microscopic 
Formation Constants and Extinction Coefficients0 

Plot 

Scatchard 
(Figure 1, curve 3) 

Benesi-Hildebrand 
(Figure 2, curve 3) 

Scott (Figure 3, curve 3) 

Slope 

-k = -K/2 

\/2kt = \/Kit 

l/2e 

Intercept 

2kt = Kt 

1/26 

l/2kt = \/Kt 

" Ki = 2k = 4k2, ki = k2 = kn = kn = k, e2 = 2ti = 2e. 

not obtainable by application of a second method such 
as nmr, as similar definitions of apparent constants will 
result there as well because of the presence of multiple 
equilibria. On the other hand, if the entire curves are 
measured, all four relevant constants can be obtained 
as long as the curves are experimentally distinguishable 
from a straight line. In case they are not, a decision 
must be made from other evidence that the straight 

(20) By such an assignment, for example, the limiting slope of the 
Scatchard plot would be — ATapp, and the intercept (at s = 0), would 
be (ATe)1Pp. 

line is one corresponding to a simple 1:1 binding model, 
or one corresponding to a PX, PX2, . . . , PX„ system 
with identical microscopic association constants and 
microscopic extinction coefficients. In any case, it 
appears from Figures 1-3 that of the order of 75% or 
more of the total saturation range is necessary to be 
sure that curvature exists, in agreement with previous 
considerations.1 

A brief consideration of the magnitude of the correc­
tion terms in eq 14 is illuminating. In the case of 
identical microscopic association constants and ex­
tinction coefficients, the actual step constant k (see 
eq 10) will always be correctly obtained, since Aapp 

= Ki/2 = k, but both A1 and the extinction coefficient 
will be in error by a factor of 2. Note that the macro­
scopic constant A1 is in this case also an apparent con­
stant, being twice as large as the actual constant for the 
first step. This can have rather interesting consequences 
on the thermodynamic functions AG° and AS0 but 
will not affect AH0 as obtained from a van't Hoff 
plot.14 Note also that the product, A^1, is always 
correct according to eq 14. 

If the extinction coefficient of the complex PX2 is well 
behaved, that is, no large hyper- or hypochromic effects 
are present, e2 ~ Ie1, and for ordinary multiple binding 
we can set an upper limit of about two to the error in 
A1 from the condition A1 ^ 4A2 (for complexes of the 
type PX^, the upper limit of error will be of the order 
y'!). For cooperative binding, however, A1 < 4A2, 
and the correction term when A1 < 2A2 and e2 = 2e2 

becomes negative and potentially very large. Al­
though an instance of a negative limiting intercept 
has been reported,21 the observation is probably due to 
insufficient data to determine a valid slope or inter­
cept1,5 rather than to cooperative binding, as positive 
values were obtained on a different concentration scale. 
An assumption sometimes made in the handling of eq 8 
for real systems1112 is that when the term containing 
[X]2 is very small, eq 8 reduces to the simple 1:1 binding 
case 

j4_ 

[Po] 

Altl[X] 
1 + A1[X] (15) 

From Table II, it is seen that this assumption is inde­
pendent of [X] itself in the limit of low saturation frac­
tion, depending only on the ratio A^A1C1. When this 
ratio is larger than 0.01 or so (1 % error or more), it is 
false to conclude9 that the binding of the first molecule 
of X can be studied in the absence of complications 

(21) M. W. Hanna and A. L. Ashbaugh, J. Phys. Chem., 68, 811 
(1964). 
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produced by attachment of a second molecule of X, 
regardless of the ratio [Po]/[X0]. By the definition of the 
equilibrium constants, the amount of complex forma­
tion varies with the absolute concentrations [P0] and 
[X0], not with their ratio, which is concentration inde­
pendent. Thus for systems in which Kiti/K^x is ap­
preciably larger than 0.01, eq 15 is inapplicable at any 
concentration of X. We might also reemphasize that 
when [X] becomes very small, the saturation fraction 
(depending on the values of the formation constants) 
approaches zero, and we enter a region where it may be 
difficult or impossible to determine accurate values of 
the limiting slope or intercepts of the plots.l 

Finally, we note that methods commonly in use22,23 

(22) M. J. S. Dewar and C. C. Thompson, Tetrahedron Suppl., 7, 
97(1966). 

(23) P. R. Hammond, / . Phys. Chem., 72, 2272 (1968). 

I. Introduction 

The Hoffmann-Woodward rules provide an 
invaluable guide to low-energy paths in chemical 

reactions and are widely verified by experiment.2 The 
arguments leading to these rules rest upon the 
correlation between orbitals of an original geometry A 
and a final geometry B. At first decisions were based 
on the fate of the highest occupied orbital in A; if this 
orbital passes into an occupied orbital of B, the nuclear 
motion probably requires little energy. It is "thermally 
allowed." If the orbital correlates instead with an 
excited orbital of B, A goes to B only by free-radical, 
multistep, or photochemical processes. Since these 
pathways are either very demanding of energy or require 
special experimental conditions, they are easily dis­
tinguished from the thermally allowed reactions. At 
the suggestion of Longuet-Higgins and Abrahamson,3 

(1) Chemistry Division, Argonne National Laboratory, Argonne, 
111. 60439. 

(2) (a) R, Hoffmann and R. B. Woodward, Accounts Chem. Res., 1, 
17 (1968); J. J. Vollmer and K. L. Servis,/. Chem.Educ.,4S,214(1968); 
(b) R. B. Woodward and R. Hoffmann, J. Am. Chem. Soc, 87, 395, 
2511 (1965); R. Hoffmann and R. B. Woodward, ibid., 87, 2046, 4389 
(1965). 

(3) H. C. Longuet-Higgins and E. W. Abrahamson, ibid., 87, 2045 
(1965). 

for "proving" the existence of 1:1 complexes, such as 
Job's method,24 have been shown to be inappropriate 
for systems in which more than one molecule of X is 
bound, leading to erroneous values for the formation 
constants.25 It can be concluded from a careful ex­
amination of the literature that there are few if any 
weak complexes determined by spectroscopic means 
which have been rigorously proven to consist only of 
1:1 complexes, other than those which are isolable as 
crystalline complexes amenable to chemical analysis. 
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(24) P. Job, Ann. Chim. (Paris), 9, 113 (1928). 
(25) Cf. discussions by Rossotti and Rossotti.12 

the arguments were put on a firmer basis by 
consideration of the correspondence of each member of 
the set of occupied orbitals in A with its counterpart in 
B. 

Application of the Hoffmann-Woodward approach 
and arguments analogous to it becomes more difficult 
in large, three-dimensional systems of low symmetry. 
In this report, we describe a reformulation of the 
Hoffmann-Woodward approach, in the language of 
localized molecular orbitals, which avoids this difficulty. 
We rely on the fact that, if a set of molecular orbitals 
<i>A correlates with another set $B, one may form 
arbitrary linear combinations within the sets without 
destroying their correspondence. The energy localized 
orbitals4 are particularly suitable linear combinations 
in this context because of the high degree of trans­
ferability of many local orbitals. The transferability 
makes the correspondence of individual orbitals very 
easy to discern: a CH bond orbital of A usually 
corresponds to a similar CH bond orbital in B, for 
example. The localized orbitals (LO's) we refer to in 

(4) (a) J. E. Lennard-Jones and J. A. Pople, Proc. Roy. Soc. (Lon­
don), A202, 446 (1950); A210, 190 (1951); (b) C. Edmiston and 
K. Reudenberg, Rec. Mod. Phys., 35, 457 (1963); J. Chem. Phys., 43, 
S97 (1965); (c) C. Trindle and O. Sinanoglu, ibid., 49, 65 (1968). 

Local Orbital Guide to Allowed Interconversions of 
C4H7

+ Ions 

Carl Trindle1 and Oktay Sinanoglu 

Contribution from the Sterling Chemistry Laboratory, Yale University, 
New Haven, Connecticut 06520. Received December 5, 1968 

Abstract: A guide to adiabatic reaction pathways, parallel to the method of Hoffmann and Woodward but 
convenient for three-dimensional molecules of low symmetry, is developed in terms of localized molecular orbi­
tals. Calculations on the C4H7

+ system illustrate the technique; several predictions are made. The syn-allyl-
carbinyl ion closes to cyclobutyl ion by a disrotatory motion. The cyclopropylcarbinyl cation rearranges to a 
nonplanar cyclobutyl ion by bending the exo-methylene toward a ring carbon. The CH bond at the formally 
charged carbon naturally assumes the axial position essential to a stable cyclobutyl ion. The protonated planar 
methylene cyclopropane may undergo a pseudorotation by conrotatory motion of the exo- and a ring methylene. 
A detailed description of delocalization in these ions is given by a newly developed semiempirical local orbital 
analysis. 
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